Hybrid Timber-Structural Glass Systems Current Test Results

Roko Žarnić, University of Ljubljana

The hybrid structural element

- The structural element is developed as an independent prefabricated load-bearing structural component for construction of seismic resistant, energy and resource efficient buildings.
- The hybrid element is constructed of cross -laminated ductile timber frame and 2-ply laminated glass infill.
- The glass-to-timber contact is designed to provide high energy dissipative properties to structural element.

Application of the hybrid element

- Bracing of existing flexible frame structures (steel, concrete, timber)
- New timber buildings
- Adaptive facades of new and existing buildings
- Strengthening and temporary supporting of heritage buildings

Performed tests

- Load bearing tests of laminated glass (3 tests)
- Cyclic tests of timber frame joints (30 tests)
- In-plane cyclic tests of laminated glass infilled timber frames (49 tests)
- Out-of-plane cyclic tests of laminated glass infilled timber frames (3 tests)
- Shake table test of box type structure (1 specimen, multiple test runs)

Capacity of 2-ply EVA laminated glass

Specime		D2 _{Fu}						
n	$F_{\mu}/1,25 (kN/m')$	(mm)	S _{3F11} (%0)					
1 - mono	138,14	21,42	0,29					
2 - mono	146,30	13,33	0,34					
3 - cyclic	102,14	21,04	0,29					

Hirvatska zaklada za znanost

Geometry of tested specimens

Repaired specimens

In plane racking and shake table tests

Hirvatska zaklada za znanost

of the VETROLIGNUM project

Boundary conditions

Racking load protocol

Yielding point defined according to the Yasumura and Kawai (1997)

List of in-plane tested specimens

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Horizontal load		Boundary		Vertical load O		
えんえん	Name	Original specimens		Repaired specimens	condition		Vertical load Q	
		Monotone	Cyclic	Cyclic	1	2	Panel weight	80kN( 25kN/m')
				- Single glazed	in-plane			
ž	SGF1	Х			Х		Х	
ğ	SGF1S			Х	Х		Х	
	SGF2		Х		Х		Х	
	SGF ₂ S			Х	Х		Х	
	SGF ₃	Х				Х	Х	
	SGF ₃ S			Х		Х	Х	
	SGF ₄		Х			Х	Х	
	SGF ₄ S			Х		Х	Х	
	SGF5		Х		Х			Х
	SGF5S			Х	Х			Х
	SGF6		Х			Х		Х
	SGF6S			Х		Х		Х
				Double glazed ·	- in-plane			
	DGF1	Х			Х		Х	
	DGF1S			Х	Х		Х	
	DGF2		Х		Х		Х	
	DGF ₂ S			Х	Х		Х	
	DGF3	Х				Х	Х	
	DGF ₃ S			Х		Х	Х	
	DGF ₄		Х			Х	Х	
	DGF ₄ S			Х		Х	Х	
	DGF5		Х		Х			Х
	DGF6*		Х			Х		Х
	DGF6S*		Х			Х		Х
				Double glazed - c	out-of-plar	ıe		
	DGF ₃ -S					Х	Х	
	DGF ₄ -S			Х		Х	Х	

za znanost

# **Definition of parameters**



$$K_{i} = \frac{F_{i}}{\mathsf{D}_{i}} \quad K_{e} = \frac{F_{e}}{\mathsf{D}_{e}} \quad \frac{K_{i}}{K_{e}} = \frac{C_{k}}{\frac{\mathsf{D}_{i}}{\mathsf{D}_{e}}} \quad \mathbf{C}_{k} = \frac{\mathbf{K}_{i}}{\mathbf{K}_{e}} \frac{\mathsf{\Delta}_{i}}{\mathsf{\Delta}_{e}}$$

C_k = factor of stiffness degradation K_e = effective stiffness, K_i = stiffness of corresponding loop,



 $\xi$  = equivalent coefficient of viscous damping  $A_h$  = surface of the corresponding hysteresis loop  $D_{max}$  = maximal displacement of the corresponding loop



max



#### Hysteretic response



### Hysteresis parameters







SGF6 and SGF6-S

0.5

0.4

Q.3

0.2

0.1

0

-0.5

0

Story drift  $\Delta$ (%)





1

0.5

SGF6 SGF6-S

1.5

2





Viscous damping coefficient

-2

-1.5

-1



## Hysteretic response



# Hysteresis parameters









Hirvatska zaklada za znanost

1st WORKSHOP of the VETROLIGNUM project



HRVATSKE ZAKLADE ZA ZNANOST



# Failure modes of frame joints









# Out of plane tests



### Conclusions

- Vertical load-bearing capacity of laminated glass sheet enables development of structural panels that can carry several floors above it.
- Laminated glass wood frame panel has a high racking resistance and can well dissipate the energy induced by horizontal earthquake actions
- Dynamic tests results showed very good agreement with the results obtained during the racking tests of the panels







### Conclusions

- The glass-timber panels can replace other frame bracing elements having many advantages because they also serve as adaptive façade elements.
- The glass-timber structural elements should be addressed both in Eurocode 5 and Eurocode 8, as well as in the new Eurocode 11 for glass structures.
- The simplified design models should be developed and added to codes in order to enable designers to use new generation of structural elements composed of wood and structural glass
- Models should include load bearing characteristics (EC5, EC8) and their dynamic characteristics (EC8)







# Thank you for attention!





